Spectral radius formulae

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

On spectral radius of strongly connected digraphs

 It is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. In this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.  

متن کامل

Optimizing the Spectral Radius

We suggest an approach for finding the maximal and the minimal spectral radius of linear operators from a given compact family of operators, which share a common invariant cone (e.g. family of nonnegative matrices). In the case of families with so-called product structure, this leads to efficient algorithms for optimizing the spectral radius and for finding the joint and lower spectral radii of...

متن کامل

The Sign-Real Spectral Radius for Real Tensors

In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.

متن کامل

Cliques and the spectral radius

We prove a number of relations between the number of cliques of a graph G and the largest eigenvalue (G) of its adjacency matrix. In particular, writing ks (G) for the number of s-cliques of G, we show that, for all r 2; r+1 (G) (r + 1) kr+1 (G) + r X s=2 (s 1) ks (G) r+1 s (G) ; and, if G is of order n; then kr+1 (G) (G) n 1 + 1 r r (r 1) r + 1 n r r+1 :

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 1979

ISSN: 0013-0915,1464-3839

DOI: 10.1017/s0013091500016448